grant's blog

Another experiment showing very low predator trap interaction rates

The Eastern Bays Songbird project has been going for 2 years and the members were keen to see how they were getting on with their goal of predator eradication. They have been using a 2040 Thermal Camera developed by The Cacophony Project to see what is going on around their traps. Their overall impression before deploying the camera was that they were getting the predator numbers down.  They hoped the Thermal Camera would be a great way to get a full picture of the predators in the area. This camera was developed because standard trail cameras are designed for pig and deer and miss lots of the small moving mammals we are interested in here.  In this entry, we share their findings.

Effectiveness of aerial poison drops

Our previous blog post showed a simple model to allow you to work out trap interaction rates. The goal of this post is to show that this same simple model can also be used to explain the effectiveness of aerial poison drops. We are not making any comments about the value of poison drops as a tool but just showing how a simple model works for different elimination methods. We like the fact that a fairly simple tool can help explain the relative merits of different elimination methods. The real value starts to appear when we tweak some of the other parameters in the model - we think it gives us a clear idea about useful ways to improve predator elimination.

How often do predators interact with traps?

Over the last three years we have had various versions of our thermal cameras in front of all the main types of traps. What we have found is that a large number of predators seem to just walk on past irrespective of what type of lures and set ups we use. We have detailed videos of rats and possums running all around traps but not always interacting with them. Typical reaction to this is that we must be doing something wrong but after watching tens of thousands of videos we suspect this is more of an issue than just us being hopeless trappers.

Today we introduce a model we have developed to allow you to calculate the interaction rate of your traps.  Given inputs such as interaction rate, elimination rate, number of devices, and predator population the model creates a graph showing the likely impact on the population.  We think the results are not only intriguing but telling.  They suggest it might be time for all of us to adjust our view of the importance of some of the factors involved.

Self-Resetting Possum Traps – how well do they work?

Self-resetting (automatic) traps have been on the market for a while now.  Speaking to trappers far and wide (as we have a habit of doing) we hear mixed reviews.  Most people seem to get some success when first deploying an auto-trap but the results tend to dip pretty swiftly. At Cacophony, we do value such anecdotal evidence (it really helps us understand the problems of using devices in the field) but we value hard, physical evidence even more.  ​​

Situations Cacophony tools are useful in

The Cacophony Project has very long-term goals to enable us to eliminate 100% of predators. It’s easy to look at what we are doing and assume that this will never work in the depths of the remote bush. While we acknowledge that there are many steps before we achieve that capability, the tools developed while getting to that end goal will be useful for other important parts of the problem.

Comments